HAYNES[®] 214[®] alloy

Principle Features

Excellent Oxidation Resistance

HAYNES[®] 214[®] alloy (UNS N07214) is a nickel - chromium-aluminum-iron alloy, designed to provide the optimum in high-temperature oxidation resistance for a wrought austenitic material, while at the same time allowing for conventional forming and joining. Intended principally for use at temperatures of 1750°F (955°C) and above, 214[®] alloy exhibits resistance to oxidation that far exceeds virtually all conventional heat-resistant wrought alloys at these temperatures. This is attributable to the formation of a tightly adherent Al_2O_3 -type protective oxide scale, which forms in preference to chromium oxide scales at these high temperatures. At temperatures below 1750°F (955°C), 214[®] alloy develops an oxide scale which is a mixture of chromium and aluminum oxides. This mixed scale is somewhat less protective, but still affords 214[®] alloy oxidation resistance equal to the best nickel-base alloys. The higher temperature Al_2O_3 - type scale which 214[®] alloy forms also provides the alloy with excellent resistance to carburization, nitriding and corrosion in chlorine-bearing oxidizing environments.

Fabrication

HAYNES[®] 214[®] alloy, like many high aluminum content nickel-base alloys that are intended to be age-hardened by intermediate temperature heat treatment, will exhibit age-hardening as a result of the formation of a second phase, gamma prime (Ni₃Al), if exposed at temperatures in the range of 1100 - 1700°F (595 - 925°C). As a consequence of this, 214[®] alloy is susceptible to strain-age cracking when highly stressed, highly-restrained, welded components are slowly heated through the intermediate temperature regime. The keys to avoiding this problem are to minimize weldment restraint through appropriate component design, and/or heat rapidly through the 1100 - 1700°F (595 - 925°C) temperature range during post-fabrication heat treatment (or first-use heat-up).

With the exception of the above consideration, HAYNES[®] 214[®] alloy does exhibit good forming and welding characteristics. It may be forged or otherwise hot-worked, providing it is held at 2100°F (1150°C) for a time sufficient to bring the entire piece to temperature. Its room temperature tensile ductility is also high enough to allow the alloy to be formed by cold working. All cold or hot-worked parts should be annealed and rapidly cooled in order to restore the best balance of properties.

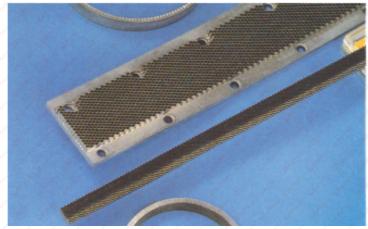
The alloy can be welded by a variety of techniques, including gas tungsten arc (TIG), gas metal arc (MIG) or shielded metal arc (coated electrode) welding.

Heat-Treatment

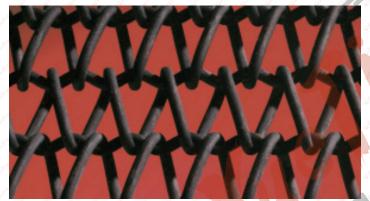
HAYNES[®] 214[®] alloy is furnished in the solution heat-treated condition, unless otherwise specified. The alloy is normally solution heat-treated at 2000°F (1095°C) and rapidly cooled or quenched for optimum properties. Heat treating at temperatures below the solution heat-treating temperature will result in grain boundary carbide precipitation and, below 1750°F (955°C), precipitation of gamma prime phase. Such lower temperature age-hardening heat treatments are not suggested.

Principle Features Continued

Applications


HAYNES[®] 214[®] alloy combines properties which make it very suitable for service in relatively low-stress, high temperature oxidizing environments, where the utmost in resistance to oxidation or scale exfoliation is needed. Its resistance to such environments persists to temperatures as high as 2400°F (1315°C), although strength limitations may apply. Applications can include "Clean Firing" uses such as mesh belts, trays and fixtures for firing of pottery and fine china, and the heat treatment of electronic devices and technical grade ceramics. In the gas turbine industry, 214[®] alloy is used for foil construction honeycomb seals, combustor splash plates, and other static oxidation - limited parts. The automotive industry has applications for 214[®] alloy in catalytic converter internals, and it is used as a burner cup material in auxiliary heaters for military vehicles. In the industrial heating market, 214[®] alloy is used for highly specialized applications such as refractory anchors, furnace flame hoods, and rotary calciners for processing chloride compounds. It is also used for parts in high temperature chlorine-contaminated environments, such as hospital waste incinerator internals.

Nominal Composition


III 76
75 Balance
- 1 6 - 1
4.5
and and and and and and
2 max.
0.5 max.
0.5 max.
0.5 max.
0.5 max.
0.15 max.
0.2 max.
0.1 max.
0.04
0.01 max.
0.01

Weight %

Typical Applications

HAYNES[®] 214[®] alloy is gaining rapid acceptance for use in honeycomb seals because of its outstanding oxidation resistance. The seals are made of thin gage foil and are used to prevent leakage between different stages in gas turbine engines. Such sealscontribute to an engines fuel efficiency.

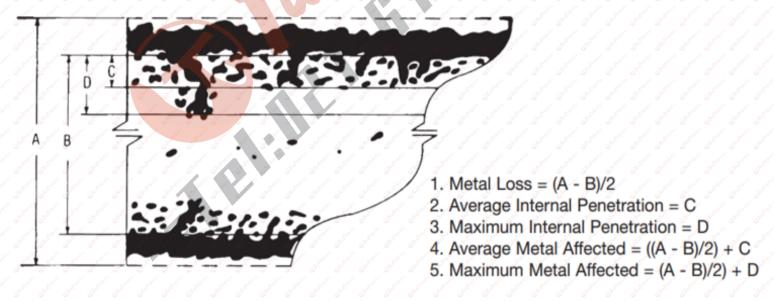
Section of a 214[®] alloy belt which was removed after 3,000 hours at 1800°F (980°C) in a chinaware decorating kiln. The belt showed only minimal wear and oxidation attack. Use of 214 alloy in this application has helped reduce the time of the operation from eight or twelve hours, to less than 30 minutes.

This 214[®] alloy flamehood remained in service for 16 months in an application where other nickel alloy hoods required replacement every three to four months. The alloy component was subjected to direct flame impingement during the entire period in an automotive products plant.

The burner assembly at left failed after 450 cycles between minus 55 and 2000°F (minus 50 and 1095°C.) A 214[®] alloy burner was still in good shape after 2000 cycles in the same test. The burners were cycled from low to high temperatures in about five minutes, held for a 15-minute burn, and then rapid-air cooled.

Oxidation Resistance

HAYNES[®] 214[®] alloy provides resistance to oxidation at temperatures of 1750°F (955°C) and above that is virtually unmatched by any other wrought heat-resistant alloy. It can be used for long-term continuous exposure to combustion gases or air at temperatures up to 2300°F (1260°C), and, for shorter term exposures, it can be used at even higher temperatures. Useful short-term oxidation resistance has even been demonstrated at temperatures as high as 2400°F (1315°C).


and the first of the first of	Sector States	800°F (980°C)	and States	2	000°F	(1095°C		2	100°F ((1150°C)		2	200°F (1205°C)
		rage Loss**	Me	rage etal ted***	Aver Me Los	tal	Aver Me Affect	tal	Aver Metal I		Aver Me Affect	tal	Aver Metal I		Me	rage etal ted***
Alloy	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm
214 [®]	0.1	3	0.3	8	0.1	3	0.2	/ 5/	0.1	3	0.5	13	0.1	/3/	0.7	18
230 [®]	0.2	5	1.5	38	0.5	13	3.3	84	1.2	-30	4.4	112	4.7	119	8.3	211
X 3 ²⁰	0.2	5	1.5	38	1.3	33	4.4	112	3.6	91	6.1	115		an <u>s</u> ta	310 _ 310	Ster _ St
601	0.4	/ 10	1.7	43	1.3	33	3.8	97	2.8	71	6.5	165	4.4	112	7.5	191
HR-120 [®]	0.4	10	2.1	53	1. Jacob	25	4.4	112	7.9	201	10.1	257	21.7	551	25.4	645
556	0.4	10	2.3	58	1.5	38	6.9	175	10.4	264	17.5	445	Strangers - Technologies	Aller - Later	tertrand - tertran	the star
600	0.3	8	2.4	61	0.9	23	3.3	84	2.8	71	4.8	122	5.1	130	8.4	213
RA-330 [®]	0.3	8	3.0	76	0.8	20	6.7	170	-	- ²	3 3 		and - and		3" - 3" 	<u> </u>
800HT	0.5	13	4.1	104	7.6	193	11.6	295	11	279	15.0	381	<u></u>	<u> </u>	3 ⁶⁷ _ 3 ⁶⁷ ,	3 <u>-</u> 3
HR-160®	0.7	18	5.5	140	1.7	43	10.3	262	2.5	64	16.0	406	13.5	345	62.9	1598
304 SS	5.5	140	8.1	206	NA	NA	>19.6	>498	NA	NA	>19.5	>495	Tran Contran	ation Station	Statuer - Statuer	Station - St
316 SS	12.3	312	14.2	361	NA	NA	>17.5	>445	NA	NA	>17.5	>445	Stream Tellegen	And - Salar	stature - stature	station of
446 SS	suntra - suntra	and - and	<i>_</i>	and - search	/13/	330	14.4	366	NA	NA	>21.5	>546	real - real	and - and	State -	1 10 ⁻¹

Comparative Oxidation Resistance in Flowing Air*

*Flowing air at a velocity of 7.0 ft/min (213.4 cm/min) past the samples. Samples cycled to room temperature once per week. ** Metal loss was calculated from final and initial metal thicknesses; i.e. ML = (OMT – FMT) /2.

***Average Metal Affected is sum of Metal Loss and Average Internal Penetration.

Metallographic Technique used for Evaluating Environmental Tests

Comparative Oxidation in Flowing Air 2100°F (1150°C)

Microstructures shown are for coupons exposed for 1008 hours at 2100°F (1150°C) in air flowing at 7.0 feet/minute (213.4 cm/minute) past the samples. Samples were descaled by cathodically charging the coupons while they were immersed in a molten salt solution. The black area shown at the top of each picture represents actual metal loss due to oxidation. The data clearly show HAYNES[®] 214[®] alloy is only slightly affected by the exposure, while other nickel-chromium alloys, such as alloys 600 and 601, and ironnickel chromium alloys, such as RA330[®] alloy, all exhibit significantly more oxidation damage. Of particular importance is the almost total absence of internal attack for the 214[®] alloy. This contrasts markedly with the very substantial amount of internal attack evidenced by the alloy 601 and RA330[®] alloy tests coupons. The nature of this internal attack, as illustrated by the photomicrographs, is common for alloys containing 1-2% aluminum or silicon. Such levels of these elements do promote chromium oxide scale adherence, but do not afford improved resistance to oxide penetration below the scale.

HAYNES[®] 214[®] alloy Average Metal Affected = 0.5 mils (13 μm)

Alloy 600 Average Metal Affected =4.8 mils (122µm)

La Maria and a second second discutant, 19

Alloy 601 Average Metal Affected =6.5 mils (71 µm)

RA330[®] alloy Average Metal Affected =8.7 mils (221 μm)

Haynes International - HAYNES® 214® alloy

	1800	°F (980	°C)/1000	Hours	2000°	F (109	5°C)/500	Hours	2100°	F (115	0°C)/200	Hours
	Metal	Loss*		je Metal cted**	Metal	Loss*		je Metal cted**	Me Lo:	tal ss*	Average Affec	
Alloy	mils	μm	mils	ν μm	mils	μm	mils	μm	mils	μm	mils	μm
214®	1.5	38	1.8	46	1.2	30	1.5	38	2.0	51	2.1	53
230 [®]	2.8	71	5.6	/142 /	7.1	180	9.9	251	6.4	163	13.1	333
556 [®]	4.1	104	6.7 🧹	170	9.9	251	12.1	307	11.5	292	14	356
X	4.3	109	7.3	185	11.6	295	14.0	356	13.9	353	15.9	404
HR-160 [®]	5.4	137	11.9	302	12.5	318	18.1	460	8.7	221	15.5	394
601	5.7	145		ough mess	off off	of station - Station	Staffanning - Staffanning		16.3	414	Thro thick	
HR-120 [®]	6.3	160	8.3	211	Ster Ster	State State	Str. Str.	(j) ³ - ₁ ³	550 5	-, St	Ster Ster	Start Start S
RA330	8.7	221	10.5	267	15.4	391	17.9	455	11.5	292	13.0	330
310 SS	16.0	406	18.3	465	Staffer Staffer	Star - Star			Cons	umed	Station - Station	Charling Charling
800H	22.9	582		ough	A	umed 300 h			Cons	umed	Station Station	Statement Statement
800HT	23.3	592		ough mess		umed 365 h	4		Cons	umed	Sanna Stattanna Stattanna	Section Contraction
304 SS	Cons	umed	Cons	umed	3 - 3 - 3 - A	-1			- *	5 ¹ 5 ¹	3" - 3"	3 3 3 3

Comparative Burner Rig Oxidation Resistance

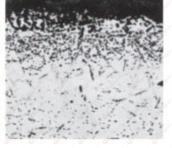
* Metal loss was calculated from final and initial metal thicknesses; i.e. ML = (OMT - FMT)/2

** Average Metal Affected is sum of Metal Loss and Average Internal Penetration

Amount of metal affected for high-temperature sheet (0.060 - 0.125") alloys exposed for 360 days (8,640-h) in flowing air.*

Station Station St	station Stationer	1800°	F (980°(C)	and the state of	2000°I	F (1095	°C)	A.C.	2100°F	(1150°C	C)	Station Station	2200°F	(1205°C)	Stationer Station
Stafford Stafford St	Me Los			ge Metal cted***	Met Los	1.1		ge Metal cted***	1000	etal ss**	1 A C C C C C C C C C C C C C C C C C C	e Metal ted***	Me	etal ss**	Average Affect	4.45
Alloy 🧹	mils	µm	mils	μm	mils	μm	mils	<i></i> ⊿µm	mils	μm	mils	μm	mils	γµm	mils	γμm
214®	0	0	0	0	0	0		0	0	0	. 0	, 0 ,			1.4	. 36
230 [®]	0.1	3	2.5	64	3.4	86	11	279	28.5	724	34.4	874	39	991	64	1626
X	0.2	5	2.8	71	17.1	434	26.2	665	51.5	1308	55.4	1407	>129.0	>3277	>129.0	>3277
HR-120®	0.5	13	3.3	84	18.1	460	23.2	589	33.6	853	44	1118	>132.0	>3353	>132.0	>3353
556 🕜	0.5	13	6.2	157	15	381	24.1	612	Statut - St	en Station	States - States	States - States	States - States	States - States	Stering - Steres	States - States
HR-160 [®]	1.7	43	13.7	348	7.2	183	30.8	782	12	305	45.6	1158	13.5	345	62.9	1598

*Flowing air at a velocity of 7.0 ft/min (213.4 cm/min) past the samples. Samples cycled to room temperature once per month.


** Metal loss was calculated from final and initial metal thicknesses; i.e. ML = (OMT - FMT) /2

***Average Metal Affected is sum of Metal Loss and Average Internal Penetration

Oxidation Test Paramerters

Burner rig oxidation tests were conducted by exposing, in a rotating holder, samples 0.375 inch x 2.5 inches x thickness (9.5mm x 64mm x thickness) to the products of combustion of fuel oil (2 parts No. 1 and 1 part No. 2) burned at a ratio of air to fuel of about 50:1. (Gas velocity was about 0.3 mach). Samples were automatically removed from the gas stream every 30 minutes and fan cooled to less than 500°F (260°C) and then reinserted into the flame tunnel.

Comparative Burner Rig Oxidation Resistance at 1800°F (980°C)/1000 Hours

HAYNES[®] 214[®] alloy Average Metal Affected = 1.8 mils (45.7 μm)

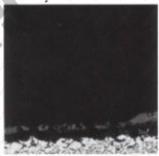
Alloy 601 Average Metal Affected > 23 mils (> 584 µm)

RA330[®] alloy Average Metal Affected =10.5 mils (267 µm)

Alloy 800H Average Metal Affected > 38 mils (> 965 μm)

Comparative Burner Rig Oxidation Resistance at 2000°F (1095°C)/500 Hours

HAYNES[®] 214[®] alloy Average Metal Affected = 1.2 mils (30 µm)


200 µm

Alloy 601 Average Metal Affected > 23 mils (> 584 μm)

RA330[®] alloy Average Metal Affected =17.9 mils (455 μm)

Alloy 800H Average Metal Affected > 38 mils (> 965 μm)

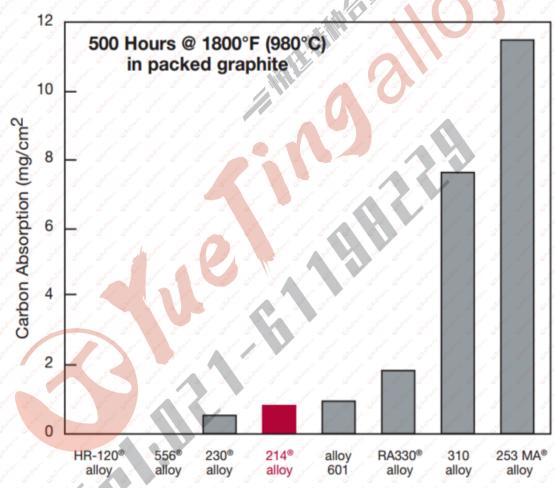
allester tallester tallester tallest	ni sectioner sectioner tection	a destroyed the product and	1200	°F (650°C		Anterna destantes desta	and the first of the first of the first	the first station of	
Stand Stand Stand Stand	1008h	and the state	weekly) ir h ₂ O	10081	1008h (cycled weekly)in air + 10%H ₂ O				
5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	Metal Loss*		Average Metal Affected**		Metal Loss*		Average Meta Affected**		
Alloy	🧹 mils 🗸	🗸 µm 🗸	✓ mils ✓	μm	mils	🧹 µm 🗹	mils	μm	
214 [®]	J 0 J	. dr ^{ee} . 0 dr ^{ee}	J. 0 J.	State O State	J .0 J	J 0 J	0.08	<mark>ے ک</mark>	
230 [®]	J 0 J	J. 0 J.	0.05	2	0.01	0	0.2	ى 🖉	
625 🗸	J. 0 J.	0 0	0.07	/ 2 /	0.01	J 0 J	0.26	J 7	
/ /X / /	0 /	y 0 y	0.18	<i>s</i> 4 <i>s</i>	0.01	0 🖌	0.13	3	
HR-120®	0 /	J 0 J	0.23	6 6	0.02	0 /	0.55	/ 14	
347SS	0.02	0	0.28	7 /	0.03	10	0.34	9	
253MA	0.05		0.5	13	0.08	2	1.12	29	

Mator Va

Ster Ster Ster	Star Star	Star Star	Str. Str. Str.	Str. St. S	1400	°F (76	O°C)		ar ar	Starting and	Str. Str. Str.	Str. Str. S
Statement Statement	1008	cled wee + 5%H ₂ O	kly) in	1008		cled wee 10%H ₂ C		1008	10° - 10°	cled wee 20%H ₂ C	S. 500	
	Me Lo:		Average Affec		Me Lo:		Average Affec		Me Lo:	tal ss*	Averag Affec	
Alloy	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm
214 [®]	0.01	/ 1/	0.05	Josef 1 and a	0.01	0	0.16	4	0.01	0	0.01	0
230 [®]	0.03		0.24	6	0.03	1	0.21	6	0.04	1	0.14	4
625	0.02	se 1,5e	0.13	3	0.04	1	0.27	7	0.05	× 1/	0.25	6
HR-120 [®]	0.04		0.24	6	0.04	1	0.29	7	0.08	2	0.68	17
X /	0.04	/1/	0.32	8	0.04	<u> </u>	0.3	8	0.06	2	0.36	9
617	Strate - State	atran - atran			0.05	1	0.45	11	Innen -	Straffer - Straffer	and a start and	
253MA	0.04	1	0.42	11	0.08	2	0.68	17	0.19	5	0.99	25
347SS	0.04	_1_	0.46	12	0.18	5	0.88	22	0.78	20	1.98	50

Stationer Stationer Stationer	Stalland Stallager	Status State	Statement Statement St	atrane Statean Statean	160	0°F (8	70°C)	Stration Station	Station Stations	harran Stalinan .	Staffinger Staffinger Staffing	States States
Statement Statement Statement	1008	S	cled wee + 5%H ₂ O		1008h	20 C	ed weekl 0%H ₂ O	y) in air	1008h		ed weekl 20%H ₂ O	y) in air
	Me Los	The All	Average Affec		Me Los		Averag Affec		Me Lo:	Sec. 500	Averag Affeo	
Alloy	mils	μm	mils	μm	mils	μm	🗸 mils 🗸	μm	mils	μm	mils	μm
214 [®]	0.05	State 1 State	0.21	5 5	0.05	3×** 1 3×**	0.26	J 7 3 .	0.04	1	0.12	3
625	0.11	J 3 J	0.41	<u></u> 11	0.11	<u> </u>	0.5 🧹	12	0.11	3	0.6	15
X	0.09	2	0.38	10	0.03	Jar 1 Jar	0.5	13	0.13	3	1.17	30
230 [®]	0.06		0.32	8	0.07	2	0.53	13	0.08	2	/ 1.11 /	28
HR-120®	0.08	2	0.54	14	0.09	2	0.68	17	0.16	4	1.06	27
617	see - see	5 5 5	n and a succession	and see star	0.08	2	0.88	22			Straff Staff Staff	Straff - straff
347SS	0.65	16	1.48	38	0.86	22	1.48	38	7.31	186	9.34	237
253MA	0.12	3	0.43	11	0.66	17	1.59	41	0.64	16	1.67	42

1008h (cycled weekly) in air + 5%H ₂ O			1008h	1008h (cycled weekly) in air + 10%H,O				1008h (cycled weekly) in air + 20%H ₂ O				
ar an an an	Me Los		1. 1. M. 1.	e Metal cted**	Me Los		Average Affec		Me Lo:		Average Affec	
Alloy	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm
214 [®]	0.04	Jun 1.	0.24	6	0.05	a 1	0.55	14	0.04	ୀ ଏ	0.64	16
188	0.13	3	1.43	36	0.14	4	1.64	42	0.18	ູ5 ປ	1.48	38
230 [®]	0.17	<u> </u>	1.47	37 🧹	0.18	5	1.38	35	0.19	5	1.59	40
625	0.32	8	1.62	41 🗸	0.16	4	1.46	37	0.36	9	1.66	42
Χ /	0.27	/7/	1.77	45	0.26	7	1.66	42	0.27	7	1.77	45
556®	terror - terror	internet - internet	a salara - salar	and last and	The state	st - st	and and and	tornant - tornant	0.35	9	1.85	47
617	0.3	8	2	51	0.15	4	1.65	42	0.39	10	1.99	50
HR-120 [®]	0.34	9	1.94	49	0.36	9	1.66	42	0.38	10	2.08	53
800HT	Strange Strange	- 51	1-2			5	1 5 <u>-</u> 5	Street Street	2.47	63	5.07	129
HR-160 [®]	Star Star		and the second	State State	<u> </u>	Ster Ster	ter Ster Ster	Star _ Star	0.77	20	5.57	141


* Metal loss was calculated from final and initial metal thicknesses; i.e. ML = (OMT – FMT) /2 ** Average Metal Affected is sum of Metal Loss and Average Internal Penetration

Carburization Resistance

HAYNES[®] 214[®] alloy has very good resistance to carburization, as measured in both packed graphite exposure tests and mixed gas exposure tests. Results for these tests are presented in the following pages. All results are presented in terms of the mass of carbon absorption per unit area, which was obtained from the equation M = C(W/A) where M = the mass of carbon absorption per unit area (mg/cm²). C = difference in carbon (weight fraction) before and after exposure, W = weight of the unexposed specimen (mg) and A = surface area of the specimen exposed to the test environment (cm²).

Packed Carburization Resistance

Carbon absorption observed for 214[®] alloy following 500 hour exposure in packed graphite at 1800°F (980°C) was very low, as shown below. While superior resistance was exhibited by HAYNES HR-120[®] and 556[®] alloys, other alloys tested exhibited significantly greater carbon absorption. In particular, the resistance to carburization of 214[®] alloy was far better than that for the stainless steel type materials.

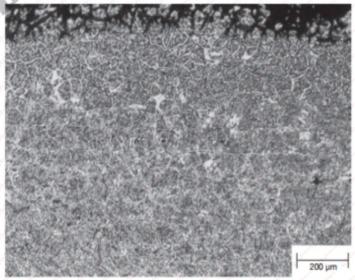
Mixed Gas Carburization Tests

Carbon absorption observed for 214[®] alloy following exposure at both 1700°F (925°C) and 1800°F (980°C) to a carburizing gas mixture was significantly lower than that for all other materials tested. This is shown in the graphs on the following pages. For these tests, the exposure was performed in a gas environment consisting of (by volume %) 5.0% H₂, 5.0% CO, 5.0% CH₄ and the balance argon. The calculated equilibrium composition for the test environments are shown together with the results on the following pages.

Carburization Resistance Continued

Comparative 1700°F (925°C) Mix Gas Carburization Tests

The calculated equilibrium composition (volume %) at 1700°F (925°C) and one atma was 14.2% H_2 ,4.74% CO, 0.0044% CO₂, 0.032 CH₄ and balance Argon. The activity of Carbon was 1.0 and the partial pressure of Oxygen was 2.47 x 10⁻²² atma.


HAYNES® 214® alloy	1700°F (925°C) for 215 Hours
HAYNES [®] 556 [®] alloy	
Alloy 800H	
Alloy 600	
HASTELLOY	® X alloy
INCONEL al	oy 601
INCO	NEL alloy 617
Start Start Start Start Start Start Start Start	
	Type 310 Stainless Steel
1 2 3	4 5 6

Carbon Absorption Per Unit Area (mg/cm²)

Typical Carburized Microstructures (Unetched) After Exposure For 215 Hours At 1700°F (925°C)

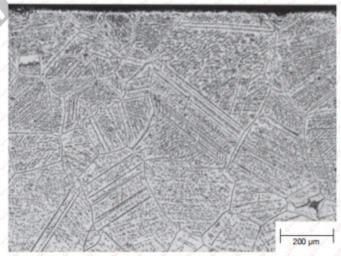
HAYNES® 214® alloy

Type 310 Stainless Steel

Carburization Resistance Continued

Comparative 1800°F (980°C) Mixed Gas Carburization Tests

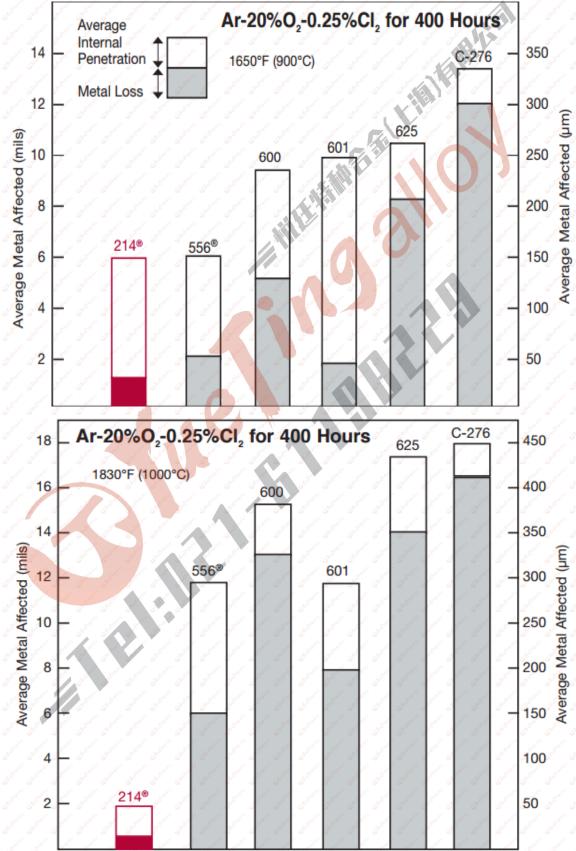
The calculated equilibrium composition (volume %) at 1800°F (980°C) and one atma was 14.2% H_2 , 4.75% CO, 0.0021% CO₂, 0.024% CH₄, 0.0098% H_2 O and balance argon. The activity of Carbon was 1.0 and the partial pressure of Oxygen was 6.78 x 10⁻²² atma.


Statement Statement Statem		1800°F (980)°C) for 55 Hours
1	HAYNES® 214® allo	Y	
Charles Charles Charles	Alloy 800H		A AND
and and and and	HAYNES®	556® alloy	
Steam Steam Steam	and a second and a s The second and a second and a The second and a	HASTELLOY® X alloy	Fil.
Station Station Station	and a second and a second a se	Alloy 600	
State State State	10 - 20 - 20 - 20 - 20 10 - 20 - 20 - 20 - 20 10 - 20 - 20 - 20 - 20		INCONEL alloy 601
Start Start Start	n an		INCONEL alloy 617
Statement Statement Statement			
Carrier Carlington Carrier	1 2	3 4	5 6 7

Carbon Absorption Per Unit Area (mg/cm²)

Typical Carburized Microstructures (Unetched) After Exposure For 55 Hours At 1800°F (980°C)

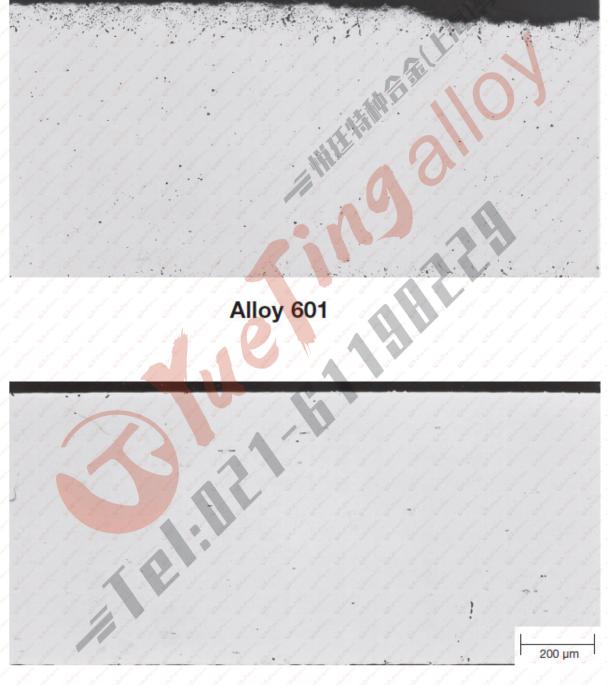
HAYNES® 214® alloy



INCONEL alloy 617 Note: Alloy 617 is carburized to the center of the sample.

Haynes International - HAYNES[®] 214[®] alloy

Resistance to Chlorine-Bearing Environments


HAYNES[®] 214[®] alloy provides outstanding resistance to corrosion in high-temperature, chlorinecontaminated oxidizing environments. This is particularly evident for exposures at temperatures at or above 1800°F (980°C), where the formation of the Al_2O_3 -rich protective oxide scale is favored. Test results are shown for 400 hour exposures in a flowing gas mixture of Ar + 20% O_2 + 0.25% Cl_2 . Note that the metal loss exhibited by 214[®] alloy is very low compared to other alloys tested.

Haynes International - HAYNES® 214® alloy

Resistance to Chlorine-Bearing Environments Continued

HAYNES[®] 214[®] alloy has also been tested in environments with higher levels of chlorine contamination. The photomicrographs below are for samples exposed to a mixture of air and 2% chlorine for 50 hours at 1830°F (1000°C). Once again, the black area at the top of each photograph represents actual metal loss experience. Alloy 601 exhibited 2.0 Mils (51 μ m) of metal loss, and an average internal penetration of 6.0 Mils (152 μ m), for a total average metal affected of 8.0 Mils (203 μ m). Results for 214[®] alloy, by contrast, were 1.0 Mils (25 μ m) of metal loss, 1.0 Mils (25 μ m) of average internal penetration, for a total average metal affected of only 2.0 Mils (51 μ m). These results are consistent with the results for lower chlorine level, longer-term tests given on the previous page.

HAYNES® 214® alloy

Haynes International - HAYNES® 214® alloy

Nitriding Resistance

While not the most resistant alloy for nitriding environments at traditional 1000°F to 1200°F (540°C to 650°C) temperatures, 214[®] alloy exhibits outstanding resistance at the higher temperatures where its protective Al_2O_3 scale can form, even in extremely low oxygen environments. Tests were performed in flowing ammonia at 1200, 1800 and 2000°F (650, 980 and 1095°C) for 168 hours. Nitrogen absorption was determined by technical analysis of samples before and after exposure, and knowledge of the exposed specimen area.

	Nit	Nitrogen Absorption (mg/cm ²)									
Alloy	1200°F (649°C)	1800°F (982°C)	2000°F (1093°C)								
230 [®]	a a a a a a a a a a a a a a a a a a a	a a 1.4 a a a	1.5								
of of 600 of of	8 8 8 8 0.8 8 8 8	0.9	0.3 0 0								
625 🖉 🖉	6 6 6 6 0.8 6 6 6	2.5	3.3								
601 / /	and and and and the 1.1 and and and	1.2	2.6								
214®	1.5	0.3	0.2								
X	1.7	3.2	3.8								
800H	4.3	4.0	5.5								
310 SS	7.4	7.7	9.5								

Physical Properties

Physical Property	Brit	ish Units	Met	ric Units
Density	RT	0.291 lb/in ³	RT	8.05 g/cm ³
Melting Range	2475-2550°F	and a strate and a strate	1355-1400°C	A state of s
Transfer Transfer Transfer Transfer Transfer	RT	53.5 µohm-in	RT	135.9 µohm-cm
	200°F	53.9 µohm-in	100°C	136.9 µohm-cm
	400°F	53.9 µohm-in	200°C	136.9 µohm-cm
	600°F	53.9 µohm-in	300°C	136.9 µohm-cm
	800°F	54.3 µohm-in	400°C	137.7 µohm-cm
	1000°F	54.3 µohm-in	500°C	137.9 µohm-cm
Electrical	1200°F	53.5 µohm-in	600°C	136.8 µohm-cm
Resistivity	1400°F	51.6 µohm-in	700°C	133.7 µohm-cm
Resistivity	1600°F	49.6 µohm-in	800°C	129.2 µohm-cm
	1800°F	48.0 µohm-in	900°C	124.9 µohm-cm
	1900°F	47.6 µohm-in	1000°C	121.6 µohm-cm
	2000°F	47.6 µohm-in	1050°C	120.9 µohm-cm
	2100°F	48.0 µohm-in	1100°C	121.0 µohm-cm
	2200°F	48.4 µohm-in	1150°C	121.9 µohm-cm
Starter Starter Starter Starter Starter (deale State State State	ر ان ان <mark>ان ان ان</mark> الم	1200°C	122.9 µohm-cm
the start of the s	🖉 🖉 RT 🖉 🖉	83 Btu-in/ft ² -hr-°F	RT	12.0 W/m-°C
	200°F	88 Btu-in/ft ² -hr-°F	100°C	12.8 W/m-°C
	400°F	99 Btu-in/ft ² -hr-°F	200°C	14.2 W/m-°C
	600°F	112 Btu-in/ft ² -hr-°F	300°C	15.9 W/m-°C
	800°F	132 Btu-in/ft ² -hr-°F	400°C	18.4 W/m-°C
Thermool	1000°F	153 Btu-in/ft ² -hr-°F	500°C	21.1 W/m-°C
Thermal Conductivity	1200°F	175 Btu-in/ft ² -hr-°F	600°C	23.9 W/m-°C
Conductivity	1400°F	200 Btu-in/ft ² -hr-°F	700°C	26.9 W/m-°C
	1600°F	215 Btu-in/ft ² -hr-°F	800°C	29.7 W/m-°C
and and and and and and and	1800°F	225 Btu-in/ft ² -hr-°F	900°C	31.4 W/m-°C
Salar Salar Salar Salar Salar	2000°F	234 Btu-in/ft ² -hr-°F	1000°C	32.7 W/m-°C
and and a start and a start and	2200°F	255 Btu-in/ft ² -hr-°F	1100°C	34.0 W/m-°C
Salar States States States States	and a set of the set	and share share share share share	1200°C	36.7 W/m-°C
and and an and a state of the state	RT	5.2 x 10 ⁻³ in ² /sec	RT /	33.6 x 10 ⁻³ cm ² /sec
	200°F	5.7 x 10 ⁻³ in ² /sec	100	34.5 x 10 ⁻³ cm ² /sec
	400°F	6.2 x 10 ⁻³ in ² /sec	200	36.6 x 10 ⁻³ cm ² /sec
a strand a strand a strand a strand	600°F	6.8 x 10 ⁻³ in ² /sec	300	39.4 x 10 ⁻³ cm ² /sec
Stand Stand Stand Stand Stand	800°F	7.5 x 10 ⁻³ in ² /sec	400	43.2 x 10 ⁻³ cm ² /sec
	1000°F	7.9 x 10 ⁻³ in ² /sec	500	47.2 x 10 ⁻³ cm ² /sec
Thermal Diffusity	1200°F	8.1 x 10 ⁻³ in ² /sec	600	49.5 x 10 ⁻³ cm ² /sec
and and an an an	1400°F	8.2 x 10 ⁻³ in ² /sec	700	52.9 x 10 ⁻³ cm ² /sec
	1600°F	8.4 x 10 ⁻³ in ² /sec	si 800 si si	51.7 x 10 ⁻³ cm ² /sec
	1800°F	9.1 x 10 ⁻³ in ² /sec	/ / 900 / /	53.3 x 10 ⁻³ cm ² /sec
	2000°F	9.4 x 10 ⁻³ in ² /sec	1000	54.2 x 10 ⁻³ cm ² /sec
	2175°F	5.2 x 10 ⁻³ in ² /sec	1100	58.6 x 10 ⁻³ cm ² /sec
	the second section in the second section and	and the state of t	1200	61.2 x 10 ⁻³ cm ² /sec

RT= Room Temperature

Physical Properties Continued

Physical Property	🧹 🧹 Briti	sh Units	Metric Units			
Staffar Staffar Staffar Staffar Staffar Staffar	of RT of a	0.108 Btu/lb°F	/ / RT /	452 J/Kg-°C		
and and are and are are are	200°F	0.112 Btu/lb°F	100°C	470 J/Kg-°C		
and and a start and and a start and a start and a start and	400°F	0.118 Btu/lb°F	200°C	493 J/Kg-°C		
all and all all all all all all all all all al	600°F	0.124 Btu/lb°F	300°C	515 J/Kg-°C		
G ^{ar}	800°F	0.130 Btu/lb°F	400°C	538 J/Kg-°C		
den	1000°F	0.136 Btu/lb°F	500°C	561 J/Kg-°C		
Specific Heat	1200°F	0.154 Btu/lb°F	600°C	611 J/Kg-°C		
" 5" 5" 5" 5" 5" 5" 5" 5" 5" " 5" 5" 5" 5" 5" 5" 5" 5" " 5" 5" 5" 5" 5" 5"	1400°F	0.166 Btu/lb°F	700°C	668 J/Kg-°C		
	1600°F	0.173 Btu/lb°F	800°C	705 J/Kg-°C		
	1800°F	0.177 Btu/lb°F	900°C	728 J/Kg-°C		
States States States States	1900°F	0.178 Btu/lb°F	1000°C	742 J/Kg-°C		
Start Start Start Start Start Start	2000°F	0.179 Btu/lb°F	1100°C	749 J/Kg-°C		
Street Street Street Street Street	2200°F	0.180 Btu/lb°F	1200°C	753 J/Kg-°C		
1 51 51 51 51 51 51 51 51 1 51 51 51 51 51 51 51 51 1 51 51 51 51 51 51 51 51	70-400°F	7.4 µin/in-°F	25-200°C	13.3 x 10 ⁻⁶ µm/m-°C		
	70-600°F	7.6 µin/in-°F	25-300°C	13.6 x 10 ⁻⁶ µm/m-°C		
	70-800°F	7.9 µin/in-°F	25-400°C	14.1 x 10 ⁻⁶ µm/m-°C		
	70-1000°F	8.2 µin/in-°F	25-500°C	14.6 x 10 ⁻⁶ µm/m-°C		
Mean Coefficient of	70-1200°F	8.6 µin/in-°F	25-600°C	15.2 x 10 ⁻⁶ µm/m-°C		
Thermal Expansion	70-1400°F	9.0 µin/in-°F	25-700°C	15.8 x 10 ⁻⁶ µm/m-°C		
Start Start Start Start Start Start	70-1600°F	9.6 µin/in-°F	25-800°C	16.6 x 10 ⁻⁶ µm/m-°C		
Stand Stand Stand Stand Stand	70-1800°F	10.2 µin/in-°F	25-900°C	17.6 x 10 ⁻⁶ µm/m-°C		
States States States States States States States	70-2000°F	11.1 µin/in-°F	25-1000°C	18.6 x 10 ⁻⁶ µm/m-°C		
and and and and and and and	and and the second second		25-1100°C	20.2 x 10 ⁻⁶ µm/m-°C		
Stand Stand Stand Stand Stand Stand	RT	31.6 x 10 ⁶ psi	RT	218 GPa		
and and and and and and and	200°F	30.6 x 10 ⁶ psi	100°C	210 GPa		
ST ST ST ST ST ST ST ST ST	400°F	29.6 x 10 ⁶ psi	200°C	204 GPa		
	600°F	28.7 x 10 ⁶ psi	300°C	199 GPa		
	800°F	27.4 x 10 ⁶ psi	400°C	190 GPa		
Dynamic Modulus	1000°F	25.3 x 10 ⁶ psi	500°C	184 GPa		
of Elasticity	1200°F	23.9 x 10 ⁶ psi	600°C	177 GPa		
States States States States States States	1400°F	22.3 x 10 ⁶ psi	700°C	170 GPa		
Starting Starting Starting Starting Starting	1600°F	20.2 x 10 ⁶ psi	800°C	162 GPa		
sand sand sand sand sand sand sand	1800°F	19.0 x 10 ⁶ psi	900°C	151 GPa		
		Can Statement Statement - Statement Statement	1000°C	137 GPa		

RT= Room Temperature

Tensile Properties

Test Temperature			rength at Offset	steel steel steel steel	e Tensile ngth	Elongation
°F	°C	ksi	MPa	ksi	MPa	%
RT	RT	83.6	577	141.4	975	37.3
1200	649	77.9	537	109.6	756	22.2
1400	760	72.3	498	88.2	608	20.4
1600	871	40.5	279	49.5	341	49.4
1800	982	6.0	41 /	9.8	68	144.8
1900	1038	3.9	27	7.3	51	153.1
2000	1093 🧹	3.0	20	5.5	38	157.1
2100	1149	2.0	/ 14/ /	4.0	28	159.3
2200	1204	1.4	10	3.2	22	134.6

Cold-Rolled and Solution Annealed Sheet, 0.078 to 0.125 Inches (2.0 to 3.2 mm) Thick*

RT= Room Temperature

Hot-Rolled and Solution Annealed Plate, 0.500 Inches (12.7 mm) Thick*

Test Temperature		10 M 10 M	rength at Offset		Tensile ngth	Elongation	
°F 🧹	°C	ksi 🖉	MPa	ksi	MPa	%	
RT	RT	82.2	565	138.9	960	42.8	
1000	538	71.5	495	120	825	47.8	
1200	649	75.9	252	114.9	790	33	
1400	760	73.6	505	94.4	670	23.1	
1600	871	50.4	345	66.4	460	33.6	
1800	982	8.4	58	16.7	115	86.4	
2000	1093	4.2	29	9	62	88.6	
2100	1149	2.1	14	6.6	46	99.4	
2200	1204	1.4	10	5	34	91.5	

RT= Room Temperature

*Elevated temperature tensile tests for plate were performed with a strain rate that is no longer standard. These results were from tests with a strain rate of 0.005 in./in./minute through yield and a crosshead speed of 0.5 in./minute for every inch of reduced test section from yield through failure. The current standard is to use a strain rate of 0.005 in./in./ minute though yield and a crosshead speed of 0.05 in./minute for every inch of reduced test section from yield through failure.

Tensile Properties Continued

Salah Salah Salah Salah Salah S	Test Temperature			ength at Offset	Ultimate Stre	Tensile ngth	Elongation	
Start Start Start Start	°F	°C	ksi	MPa	ksi	MPa	%	
Stand Stand Stand Stand	RT	RT	81.0	558	124.0	855	22.0	
Star Star Star Star Star Star Star Star	1000	538	70.0	483	99.0	683	13.0	
Star Star Star Star Star Star Star Star	1200	649	79	545	97	669	10	
Transverse	1400	760	77	531	83	572	5	
Specimens with GTAW Welds	1500	816	66	455	70	483	5	
GIAW Welds	1600	871	46	317	50	345	5 , 5	
Staffor Staffor Staffor Staffor S	1800	982	10	69	<u> </u>	76	35	
Statut Statut Statut Statut Statut	2000	1093	J 4 J	28	5	34	29	
States States States States States	RT	RT	85	586	118	814	33 6	
All Weld	1400	760	81	558	85	586	J J J 4 J J	
Metal Speci-	1500	816	68	469	70	483	<u> </u>	
mens	1600	871	N/A	N/A	51	352	Station State 3 States State	
and all all all all all all all all all al	1800	982	N/A	N/A	12	83	24	

Welded Tensile Tests

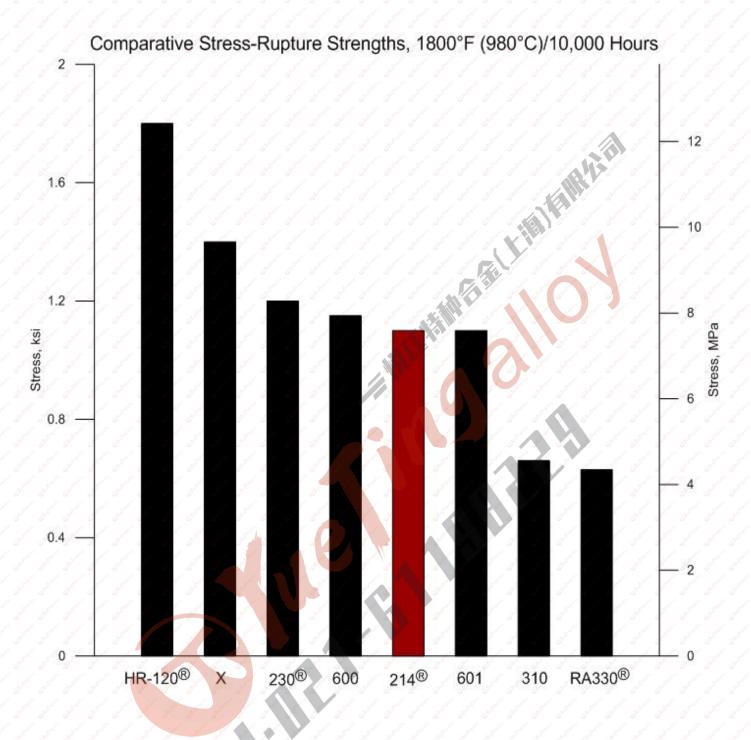
Hardness

Hardness		
and	Typical ASTM Grain Size	Average Hardness, HRBW
Plate	3.5 - 5	100
Bar	2.5 - 5.5	94
Sheet	3.5 - 5	98

Creep and Rupture Properties

	Testimore testimore		Ар	proxima	te Initial	Stress to	o Produc	e Specifi	pecified Creep in		
Tempe	rature	Creep	10 h		10	100 h		00 h	10,000 h		
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa	
Steel Steel	Star Star S	0.5	String String	Star Star St	and state state	3 ⁵⁴ 3 ⁵⁴ 3 ⁵⁴	46	317	3 ⁶⁶ 3 ⁶⁶ 3	Ster 3	
1200	649	້ _. ເ ^ຄ ີ 1 ເ ^ຄ ັ່ງ ເ	Stat_ State	State State St	a Stati - Stati	Start Start Start	53	365	State State S	State of	
	Station Station S	S R S	State - State	States States St	5 - 5 M	State State State	57	393	37	255	
Station Station	Station Station S	0.5	State States - States	States States St	45	310	30	207	States - States St	State - C	
1300	704	ى ^ر يەر 1 كۈر مە	Star Star	States - States - St	49	338	32	221	States - States S	Search States	
	Shiftener Statement	R	Sector States States	Station Station of	51	352	33	228	21*	145'	
Andream Andream	strationant stationers	0.5	38	262	26	179	17.5	121	11.2*	77*	
1400	760	1	42	290	29	200	18.8	130	11.7	81	
	St. St. S.	R	50	345	33	228	19.8	137	12.3	85	
Straff case	or or o	0.5	23	159	15	103	8.9	61	e Staff - saff	and and a	
1500	816	, ^{or} 1 ^{or} , ^o	27	186	16.5	114	9.9	68	State State S		
	State State S	[°] R ^{or}	32	221	20	138	11.5	79	7	48	
Steller Steller	State State 3	0.5	12.7	88	7.5	52	4.5	31	State State St	·	
1600 871	^ر ماند 1 ماند را	15.2	/ 105 /	8.7	60	4.9	34 🗸	Station -Station St	See Shaller a		
	Station Station S	/ R./ 3	21*	145*	11.8	81	6.3	43	3.4	23	
Station Station Station	Stration Station S	0.5	6.5	45	3.7	26	2.1	14	Station Station St	Start Starter	
1700	927	and we 1 want	7.5	52	4.2	29	2.4	17	telland - telland	Sector State	
	section section	R	9.8	68	5.6	39	3.1	21	1.8*	12*	
or or	Starter Starter	0.5	1.9	13	1.2	8.3	0.75*	5.2*	a the second second	ser s e r	
1800	982	/ 1 /	2.2	15	1.3	9	0.83*	5.7*		control control co	
	Ster Ster S	R	4.8	33	2.7	19	1.7	12	ໍ້_1	6.9	
Stati Stati And Stati	Star Star S	0.5	1.2	8.3	0.74*	5.1*	0.48*	3.3*	i Start - Start St	and the second	
1900	1038	_ ^{or} 1 ^{or} _ o	1.4	10	0.88	6.1	0.55*	3.8*	State State State	Stat_ 3	
	States States S	R	3.3*	23*	2	14	1.2	8.3	0.76	5.2	
Stelling Stelling	Straffen Staffen	0.5	0.75	5.2	0.55	3.8	0.32	2.2	Station - Station St	State - C	
2000	1093	1	0.95	6.6	0.63	4.3	0.43	3	Station Station St	Star Star	
	States States	R	2.2*	15*	1.5	10	0.94	6.5	0.61	4.2	
Stationary Stationer	Statement attached	0.5	0.53	3.7	0.35	2.4	and attaction of a trainaged	later at a star	atelian ateran	Search State	
2100	1149	1	0.64	4.4	0.42	2.9	0.27	1.9	s Testington	Server the area	
or or	and and	R	1.6*	11*	1.1	7.6	0.69	4.8	0.44	3	
St. St.	Gradie traffi	0.5		Con Ch Ch	and the second	St. St. St.	aller stadt - stadt	tenten tenten tent	6' 6' 6 	Contract Contract C	
2200	1204	1		Str. St. St.	all and and	5° 5° 5°	and and and	and and and	- 5 ⁴ - 5 ⁴ - 5	Str. 3	
	State State S	R	1.1*	7.6*	0.76	5.2	0.49	3.4	. 3 ¹⁰		

Solution Annealed Sheet


*Significant extrapolation

Creep and Rupture Properties Continued

States of	atrat Statean Statean	and and a		<u>d' d' d'</u>			<u> </u>		ified Creep in		
Temperature		Creep		h	N 440 440	0 h	1,00	<u>8 110 110</u> 23 23	10,000 h		
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa	
S. S.	Cr Cr	0.5	41*	283*	29	200	21	145	14*	97*	
1400	760	or 1 or	44*	303*	32	221	23	159	14.5*	100'	
ferting Station Station Station	<pre>✓ R </pre>	55*	379*	38	262	24	165	15	103		
offer States S	of the Otel and Otel and	0.5	26	179	19	131	12.8	88	7.8*	54*	
1500	816	States Index St	28	/ 193 /	20.5	141	13.8	95	8.4*	58*	
States States S	Stars States States	J R .	35	241 🗸	23	159	15	103	9.0*	62*	
Strand States of S	alternet Statement Statement	0.5	17*	117*	11.2	/ 77 /	6.2	43	3.3	23	
1600	871	aternan 1 ternan	20*	138*	12.2	84	6.7	46	3.7	26	
Arrange Contractor	alleaner a stream suffer	R	24*	165*	15	103	8.5	59	4.6	32	
Analist Analist	Starter Starter Start	0.5	8.5	59	4.9	34	2.6	18	1.4	10	
1700	927	, 1 , °	9.7	67	5.3	37	2.9	20	1.6	11	
a star s	ed Steel Steel	R	11.5	79	7.1	49	4.2	29	2.4	17	
an Star S	of State State	0.5	2 2	14	1.3	9	0.85	5.9	State State St	Ster _ S	
1800	982	Star 1 at St	2.2	15	1.5	10	of 10 0	6.9	0.68*	4.7*	
after Station Station State	/ R /	3.9	27 🗸	2.9	20	1.8	12	/ 1.1 /	7.6		
atrone Statione S	atren Station Station	0.5	1.2	8.3	0.77	5.3	0.5	3.4	Station Station St	State - S	
1900	1038	States James St	1.4	10	0.91	6.3	0.6	4.1	0.39	2.7	
Annual Antonio	allen dealers and and	R	2.9	20	1.9	/ 13 /	1.2	8.3	0.8	5.5	
Annald and and a	Start astrony astrony	0.5	0.77	5.3	0.48	3.3	0.29	2	antinent - antinent	part with	
2000	1093		0.93	6.4	0.62	4.3	0.41	2.8	0.20*	1.4*	
an Str. 3	en Stern Stern	R	2.1*	14*	1.4	9.7	0.9	6.2	0.6	4.1	
- 3 ⁻ 3	and and an	0.5	0.47	3.2	0.27*	1.9*	- ³¹ - ³¹ - 3	<u>, , , ,</u> ,	G ^{er} G ^{er} G ^e		
2100	1149	1 . J	0.60*	4.1*	0.35	2.4	a State - State of	State State	State State St	Star - S	
strate States S	etre Stefen Stefen	R	1.6*	11*	1	6.9	0.68	4.7	0.44	3	
States 3	and sur	0.5	0.35	2.4	0.19*	1.3*	State - State 3	alter State	States - talk St	stati- s	
2200	1204	1	0.45*	3.1*	0.26	1.8	Station - Station S	atran States States	Station Station St	station - 6	
And Share a share a	Andre States States	R	1.1*	7.6*	0.77	5.3	0.5	3.4	0.33	2.3	

Solution Annealed Plate

Creep and Rupture Properties Continued

•

Thermal Stability

HAYNES[®] 214[®] alloy exhibits reasonable room temperature ductility after longterm thermal exposure at intermediate temperatures. Precipitation of gamma prime phase occurs for exposures below 1750°F (955°C), along with minor chromium-rich carbides. Exposure at temperatures above about 1700°F (925°C) have little effect upon the properties of 214[®] alloy, but significant grain growth can occur above about 2000°F (1095°C).

Exposure Temperature				o Yield ength	1	e Tensile ngth	Elongation
°F 🖌	°C	a she she she	🖌 ksi 🖌	MPa	ksi	MPa	× × % × ×
Jeffer Station Stat	Steller Steller St	st st of st	89.4	615	141.1	975 🧹	37.3
1100	760	32	104.6	720	157.5	1085	27.6
1400		100	103.7	715	157.8	1090	26.1
before Stationers Stati		1000	98.3	680	156.4	1080	27.1
Infrance Stationers Stat	1600 870	.0	89.4	615	141.1	975	37.3
1600		32	81.6	565	139.7	965	35
		100	76.9	530	135.5	935	35.1
estimated estimated esti		1000	71.6	495	132.5	915	39.9
after after after	and the first of the first of	0	89.4	615	141.1	975	37.3
1000	1000	32	84.6	585	137.5	950	38
1800	980	100	84.7	585	137.7	950	34.2
ter Ster Ster		1000	87.9	605	139.6	965	35.2

Room-Temperature Tensile Properties of Sheet Following Thermal Exposure

Hot Working

Hot Working

When planning to hot work HAYNES[®] 214[®] alloy one should first review the metallurgy of the alloy. With an understanding of its metallurgical characteristics, many options become available to the manufacturer who wishes to hot deform 214[®] alloy.

Introduction

HAYNES[®] 214[®] alloy (Ni base; Cr 16; Fe 3; Al 4.5; Y present) is different from most other alloys because it is nickel base and contains aluminum to create its protective alumina surface film. The aluminum also causes the intermetallic compound, Ni₃Al, to form rapidly at temperatures between about 1000°F (540°C) and 1750°F (950°C). The intermetallic phase, commonly called gamma prime (γ '), greatly strengthens the alloy, but also reduces the ductility from about 90% tensile elongation near 2000°F (1095°C) to about 15% tensile elongation in the 1300°F (700°C) to 1400°F (760°C) range. This property is shown in the accompanying tensile property graphs.

Grain size of the hot worked part is a function of starting grain size, temperatures of hot working, stress relieving or annealing, and degree or amount of work imparted. In very broad terms, grain size of 214[®] alloy increases with increasing temperature and is refined by increased working or deformation.

The final grain size of a component is usually important and should be considered when planning forging or other hot working operations. Larger grain sizes tend to yield higher creep and stress rupture life in service, but tend to reduce the intermediate temperature (1200°F (650°C) to 1750°F (950°C) ductility and increases the tendency of strain age cracking to occur if the component requires welding. Resistance to the environment apparently is not affected by grain size.

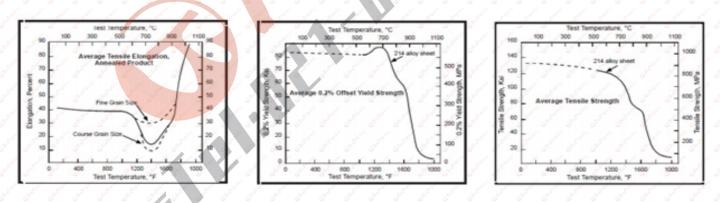
Metallurgy

Hot Working Variables HAYNES[®] 214[®] alloy has been successfully hot worked in the temperature range of about 2200°F (1200°C) to 1800°F (980°C). Heat up time will vary with size and complexity of the work piece. With complex shapes with transitions from large to small cross sections, it may be beneficial to equilibrate the component at about 1600°F (870°C), before raising the temperature to the final hot working temperature. In general, the best overall results seem to be achieved by working from a furnace temperature near 2100°F (1150°C). Working the alloy quickly with substantial deformation sufficient to maintain heat within the work piece is good practice. Stopping the operation when the work piece reaches 1800°F (980°C) to minimize the chance of cracking caused by the precipitation of gamma prime and the resultant loss of ductility is strongly advised.

If only a modest amount of work is to be done, for example a finishing pass, the operator should consider reducing the furnace temperature to be used for heating the work piece to prevent excessive grain growth in the alloy. Again, stopping the working when the temperature of the piece drops to 1800°F (980°C) is recommended.

Hot Working Continued

Stress Relief and Annealing


As these terms are used here, the difference between stress relieving and annealing is that annealing includes a rapid quench to prevent the precipitation of Ni₃Al, whereas a stress relieved part is typically cooled more slowly and provides more uniform cooling. Since the Ni₃Al which forms in 214[®] alloy dissolves (goes into solid solution) at temperatures above about 1800°F (980°C) causing a substantial drop in yield strength, the alloy can be effectively "stress relieved" or solution annealed at temperatures greater than this. It is the usual practice of Haynes International, Inc. to anneal product between 1950-2050°F (1065-1120°C) and rapidly cool the alloy to prevent, or minimize, the formation of gamma prime if hot deformation processes are complete. If the product is to be subsequently hot deformed, the piece is generally allowed to air cool to ambient temperature after heating.

The actual temperature chosen for stress relief or annealing should be based on the properties desired in the final product. High temperatures tend to yield large grain size, reduced mid-temperature ductility, reduced resistance to strain age cracking, better creep-rupture strengths, lower room temperature strengths, better room temperature ductility and easier machining.

Lower temperatures tend to preserve the existing mid-temperature ductility and grain size, the existing resistance to strain age cracking and result in less distortion, if a quench is used.

When a product is stress relieved and slow cooled, one can expect gamma prime to form in the alloy. This increases room temperature hardness, strength, and difficulty of machining.

The discussions presented here are based upon general experience at Haynes International, Inc., Kokomo, Indiana. They are indicative only of the results obtained at the location and should not be considered as guaranteed operating parameters at:

Welding

HAYNES® 214® alloy is a precipitation-strengthened alloy. When the gamma prime phase (Ni_aAl) precipitates, the alloy undergoes a slight volumetric contraction. It is possible that stress and strain caused by welding and mechanical deformation caused by the precipitation may cause cracking.

Good welding practice to join gamma prime alloys applies to 214[®] alloy:

- Base metal should be normally in the solution-annealed condition 相相相的
- Minimize heat input
- Minimize restraint
- Cleanliness is critical
- Use stringer beads
- Maintain interpass temperature of 200°F maximum
- Use better layers or forgiving fillers (HASTELLOY® X alloy or HASTELLOY® S alloy) as required
- A convex profile (crowned) weld bead is mandatory
- No partial penetration welds

HAYNES® 214® alloy has been joined successfully using gas tungsten arc (GTAW), gas metal arc (GMAW), shielded metal arc (coated electrode), and plasma arc (PAW) welding techniques. Matching composition filler metal is recommended for joining 214® alloy. For shielded metal-arc welding, HASTELLOY® X electrodes (AMS 5799) are suggested. For dissimilar metal joining of 214[®] alloy to nickel- or cobalt-base materials, HAYNES[®] 230-W[®] filler metal will generally be a good selection, but HASTELLOY[®] S alloy (AMS 5838) or HASTELLOY® W alloy (AMS 5786, 5787) welding products may be used. For dissimilar welding to iron-base materials, HAYNES[®] 556[®] (AMS 5831) filler metal is recommended. When using a filler metal other than 214[®] alloy, the environmental resistances of the weld will be inferior to that of the base metal, and a cover pass using 214[®] alloy wire is suggested as a means to increase environmental resistance.

Base Metal Preparation

The joint surface and adjacent area should be thoroughly cleaned before welding. All grease, oil, crayon marks, sulfur compounds and other foreign matter should be removed. It is preferable that the alloy be in the solution-annealed condition when welded. Oneinch wide areas along each side of the weld joint should be ground to expose bright metal before welding. Welds should also be ground between passes.

Weld Joints

A square butt joint is used for sheet material up to 7/64 inch. A V-joint is used for butt welds in thicknesses from 7/64 inch up to 3/8 inch, a double-V or a U-joint for thicknesses of 3/8 inch to 5/8 inch (a double-V joint is preferred if both sides of the plate are accessible), and a double-U joint for thicknesses over 5/8 inch. T-joints are used when required by design. Partial penetration or fillet welds are not recommended.

V-joints should be beveled to a 60° included angle for GTAW welding, (70° for SMAW), while U-joints should have bevels with an included angle of 30° and a minimum radius of $\frac{1}{4}$ inch. For coated electrodes, the joint should be opened up an additional 10 - 15°.

Welding Continued

Weld Penetration

For full penetration, material 12-gage (7/64 inch) and heavier should be welded from both sides. Material thinner than 12-gage may be welded from one side by using proper edge spacing to allow full penetration. Care should be exercised to prevent incomplete penetration. This condition can leave undesirable crevices and voids in the underside of the joint. Incomplete penetration in material used for high-temperature applications creates stress risers for focal points of mechanical failure.

When welding from both sides is not practical, the joint spacing should be increased and a copper backing bar used. Currents slightly higher than normal are used to obtain complete penetration. HAYNES[®] 214[®] alloy has a lower thermal conductivity than steel; therefore, when using a standard groove, it is necessary to use slightly larger clearance than would be needed for steel.

Preheating, Interpass Temperatures and Post- Weld Heat Treatment

Preheat is not usually required so long as base metal to be welded is above 32°F (0°C). It is critical to minimize heat input. The lowest amperage and voltage possible are preferred. Minimize weave, use stringer beads when possible. Avoid excessively slow travel speeds and out-of-position welding, which cause heat buildup. Excessively fast travel speeds result in teardrop-shaped weld puddles and should also be avoided to prevent centerline cracking. Interpass temperatures should less than 200°F. Auxiliary cooling methods, including water quenching, may be used between weld passes, as needed, providing that such methods do not introduce contaminants and the part is dried.

Post weldheat treatment for 214[®] alloy depends on part thickness and complexity. For 214[®] alloy fabrications that will be in service at 1200-1800°F, weldments made of greater than 1/4" thickness, or those which have been welded into configurations which create significant residual stresses, a post weld annealing heat treatment is suggested. The objective of a post weld heat treatment is to minimize and eliminate residual stress in the assembly.

A heat treatment at a metal temperature between 1900°F and 2000°F has been successful. The metal at temperature as little as 5 minutes is usually sufficient. If no additional welding or forming is to be performed, the fabrication may be air cooled, otherwise rapid cooling is advised.

Care must be taken when annealing. Heating 214[®] alloy through the temperature range of 1200-1800°F will cause gamma prime (Ni₃Al) to precipitate. This gamma prime precipitation results in a net shrinkage, as well as an increase in strength and corresponding loss of ductility. In weldments and other highly stressed components, strainage cracking may occur. This occurs when the residual stresses from forming and welding, augmented by stresses caused by precipitation, exceed the rupture strength of the base metal. It is important to heat the material through the 1200-1800°F temperature range as rapidly as possible. Do not stress relieve in the 1200-1800°F temperature range.

Torch heating or heating methods employing direct flame impingement on the fabrication should be avoided. Heating has been successfully done in an air atmosphere, as well as a protective atmosphere.

Disclaimer:

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data in this document but makes no representations or warranties as to the data's accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums. It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc. All trademarks are owned by Haynes International, Inc., unless otherwise indicated.